Address variation as a mitigation strategy in Uruguayan Spanish

María Irene Moyna
Texas A&M University

INAR 5, Sheffield, June 6-8, 2019
Introduction
Informal address in Latin American Spanish

- In Spanish-speaking America:
 - Complex second person system:
 - Formal pronoun: usted (U)
 - Informal pronouns: tú (T), vos (V)
 - Vos (< 2p) is recognized as the 2s norm in some varieties:
 - Central America
 - Río de la Plata
Informal address in Uruguay

- **Complex situation:**
 - Historically, there has been competition between *tuteo* and *voseo*
 - Synchronically, the *voseo* pattern is hybrid, i.e., made up of T and V forms
Second person paradigm

<table>
<thead>
<tr>
<th>Forms</th>
<th>Formal</th>
<th>Informal</th>
<th>Hybrid voseo (Montevideo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronouns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>usted</td>
<td>tú</td>
<td>vos</td>
</tr>
<tr>
<td></td>
<td>(a) usted</td>
<td>(a) ti</td>
<td>(a) vos</td>
</tr>
<tr>
<td>Obj. con</td>
<td>con usted</td>
<td>contigo</td>
<td>con vos</td>
</tr>
<tr>
<td>Verbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperative</td>
<td>cante</td>
<td>canta</td>
<td>cantá</td>
</tr>
<tr>
<td>Pres. Indic.</td>
<td>canta</td>
<td>cantas</td>
<td>cantás</td>
</tr>
<tr>
<td>Pres. Subj.</td>
<td>cante</td>
<td>cantes</td>
<td>cantés</td>
</tr>
<tr>
<td>Neg. Imper.</td>
<td>(no) cante</td>
<td>(no) cantes</td>
<td>(no) cantés</td>
</tr>
<tr>
<td>Preterite</td>
<td>cantó</td>
<td>castaste</td>
<td>cantaste(s)</td>
</tr>
</tbody>
</table>

Table 1. Pronominal and verbal paradigms of the 2s, showing forms with a three-way distinction. N.B.: In all other verb forms tuteo and voseo are identical.
Variation

Because in Montevideo tú and vos both occupy what is essentially the ‘same’ position in the paradigm, we would expect social variation:

- Speaker age
- Speaker and addressee gender
- Social affiliation
- Educational attainment
- Pragmatic function
Pragmatic variation

- *Voseo/tuteo* variation can change the semantic-pragmatic force of specific speech acts.

- Present subjunctive exhibits pragmatic variation when used in negative commands (Fontanella 1979, Johnson & Grinstead 2001, Johnson 2016):
 - *Tuteo* preferred in prohibitives:
 - ¡No *cantes!* ‘Don’t sing! ~ Don’t start to sing’
 - *Voseo* possible and more likely in cessatives:
 - ¡No *cantés!* ‘Don’t sing! ~ Stop singing!’
Objective

❖ In this paper, I compare the effect of three types of directives on tú/vos choice:
 ➢ Requests
 ➢ Recommendations
 ➢ Commands

❖ Directives are face-threatening acts (FTA) since they breach negative politeness, by seeking to influence the behavior of the addressee and potentially create interpersonal friction
Research hypotheses

❖ In Montevideo Spanish (MSp), which retains both vos and tú, variation of these forms will serve to mitigate the potential face threat posed by directives.

❖ The more potentially face-threatening a directive is, the more tuteo will be used as a mitigating strategy.
 ➢ Tú will be most frequent in requests and commands
 ➢ Vos will be more frequent in recommendations
I further hypothesize that other independent variables will correlate with higher tuteo use across directives:

- Female speaker gender
- Female addressee gender
- Higher social class
- Higher educational attainment
- Attendance at private/elite schools
Methodology
Data collection

- Survey distributed throughout Uruguay in person and through Survey Monkey
 - Sociolinguistic section:
 - Age, gender, provenance, socio-educational class
 - Usage section:
 - 34 items with hypothetical situations for which the respondent had to choose a preferred form
 - For this study, I considered 4 pairs of items (each one in two forms, one addressed to a male, one to a female):
 - 3 directives: request, recommendation, command
 - 1 non-directive: enquiry
 - Respondents could choose up to two answers, and/or fill in their own.
- 367 completed surveys from Montevideo
Example: Request

Usted invitó a su amiga a tomar el té en una confitería, pero cuando llega el momento de pagar, se da cuenta que se olvidó de su billetera en casa. Pídale a su amiga que pague por usted:

a. ¿Vos no pagarías esto? Yo te lo devuelvo después.
b. ¿Tú no pagarías esto? Yo te lo devuelvo después.
c. ¿Usted no pagaría esto? Yo se lo devuelvo después.
d. Otra forma: ______________________________________

‘You invited a friend to have tea in a tea room, but when it’s time to pay, you realize that you left your wallet at home. Ask your friend to pay for you:

a. Could you pay for this? I'll return you the money later. (V)
b. Could you pay for this? I'll return you the money later. (T)
c. Could you pay for this? I'll return you the money later. (U)
d. Something else: ______________________________________
Participants

❖ Age ranges:
 ➢ Age 1 (18-30)
 ➢ Age 2 (31-50)
 ➢ Age 3 (51+)

❖ Gender:
 ➢ M
 ➢ F
Participants

❖ Income levels:
 ➢ Low (less than national average)
 ➢ Mid (around national average)
 ➢ High (higher than national average)

❖ Occupation:
 ➢ Level 1 (non-professionals)
 ➢ Level 2 (professionals)
Participants

❖ Type of schooling:
 ➢ Public school
 ➢ Private (neighborhood) school
 ➢ Elite school

❖ Educational level
 ➢ Secondary
 ➢ Technical
 ➢ University
Participants

- Departamento (Neighborhood):
 - Montevideo A: upper middle class
 - Montevideo B: middle class
 - Montevideo C: working class/semi-rural
Participants

❖ Speech Act:
 ➢ Command (Com)
 ➢ Request (Req)
 ➢ Recommendation (Rcm)
 ➢ Enquiry (Enq)
Methodology

- Quantification of responses:
 - answers totaled
 - double answers (T, V) counted as both T and V
 - Filled-in answers:
 - Classified according to address pronoun
 - If no pronoun, then the verb form was used
 - If verb form was ambiguous, then answer was counted as both T and V
 - discarded if lacking a 2s pronoun or verb
Statistical analysis

- Logistic regression with Rbrul:
 - To establish the significance of each independent variable on the dependent variable (choice of 2s)
 - Models: T vs. Other; V vs. Other

- Modelling with R:
 - To show the relative significance of each factor (random forests)
 - To present the main factors in an easy to visualize their hierarchy (inference trees)
Results
Overall data structure

<table>
<thead>
<tr>
<th>Form</th>
<th>Counts</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voseo</td>
<td>2185</td>
<td>75.9</td>
</tr>
<tr>
<td>Tuteo</td>
<td>485</td>
<td>16.8</td>
</tr>
<tr>
<td>Voseo + Tuteo</td>
<td>197</td>
<td>6.8</td>
</tr>
<tr>
<td>Ustedeo</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>Ustedeo + Tuteo/Voseo</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Totals</td>
<td>2878</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Percentages and totals for all address form responses in the study (commands, requests, recommendations, enquiries).
Binary T (T vs. Other)

- Logistic regression in Rbrul (one-level analysis):
 - Very significant factor groups:
 - Age (6.09×10^{-36})
 - Speech Act (1.72×10^{-28})
 - Sex (6.38×10^{-06})
 - Education Level (8.52×10^{-05})
 - Other significant factor groups:
 - Income (0.00243)
 - Schooling (0.0384)
 - Not significant: Departamento, occupation, addressee gender
Speech Act

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>T (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request</td>
<td>0.749</td>
<td>659</td>
<td>33.5</td>
<td>0.679</td>
</tr>
<tr>
<td>Command</td>
<td>0.685</td>
<td>659</td>
<td>32.3</td>
<td>0.665</td>
</tr>
<tr>
<td>Recomm</td>
<td>-0.319</td>
<td>655</td>
<td>16.3</td>
<td>0.421</td>
</tr>
<tr>
<td>Enquiry</td>
<td>-1.115</td>
<td>659</td>
<td>8.5</td>
<td>0.247</td>
</tr>
</tbody>
</table>

Table 6. Summary of multivariate analysis of the factor Speech Act for the variable Binary T.
Table 7. Summary of multivariate analysis of the factor Age for the variable Binary T.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>T (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 3</td>
<td>0.945</td>
<td>625</td>
<td>40.5</td>
<td>0.72</td>
</tr>
<tr>
<td>Age 2</td>
<td>-0.217</td>
<td>1135</td>
<td>19.8</td>
<td>0.446</td>
</tr>
<tr>
<td>Age 1</td>
<td>-0.728</td>
<td>872</td>
<td>13.6</td>
<td>0.326</td>
</tr>
</tbody>
</table>
Speaker Gender

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>T (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-0.283</td>
<td>681</td>
<td>15.7</td>
<td>0.43</td>
</tr>
<tr>
<td>F</td>
<td>0.283</td>
<td>1951</td>
<td>25.1</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table 8. Summary of multivariate analysis of the factor Speaker Gender for the variable Binary T.
Table 9. Summary of multivariate analysis of the factor Education Level for the variable Binary T.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>T (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary</td>
<td>0.111</td>
<td>161</td>
<td>30.4</td>
<td>0.528</td>
</tr>
<tr>
<td>Technical</td>
<td>0.251</td>
<td>215</td>
<td>28.8</td>
<td>0.562</td>
</tr>
<tr>
<td>University</td>
<td>-0.362</td>
<td>2256</td>
<td>21.5</td>
<td>0.411</td>
</tr>
</tbody>
</table>
Binary (V vs. Other)

- Logistic regression in Rbrul (one-level analysis of response):
 - Very significant factor groups:
 - Speech Act (2.47e-43)
 - Age (2.37e-34)
 - Sex (5.17e-06)
 - Other significant factor groups:
 - Education Level (0.0016)
 - Income (0.00776)
 - Addressee gender (0.00892)
 - Not significant: Schooling, Departamento, Occupation
Speech Act

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>V (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquiry</td>
<td>1.056</td>
<td>659</td>
<td>93.9</td>
<td>0.742</td>
</tr>
<tr>
<td>Recomm</td>
<td>0.248</td>
<td>655</td>
<td>87.9</td>
<td>0.562</td>
</tr>
<tr>
<td>Request</td>
<td>-0.546</td>
<td>659</td>
<td>78.3</td>
<td>0.367</td>
</tr>
<tr>
<td>Command</td>
<td>-0.759</td>
<td>659</td>
<td>75</td>
<td>0.319</td>
</tr>
</tbody>
</table>

Table 3. Summary of multivariate analysis of the factor Speech Act for the variable Binary V.
Table 4. Summary of multivariate analysis of the factor Age for the variable Binary V.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>V (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 1</td>
<td>0.799</td>
<td>872</td>
<td>91.3</td>
<td>0.69</td>
</tr>
<tr>
<td>Age 2</td>
<td>0.277</td>
<td>1135</td>
<td>87</td>
<td>0.569</td>
</tr>
<tr>
<td>Age 3</td>
<td>-1.077</td>
<td>625</td>
<td>67.5</td>
<td>0.254</td>
</tr>
</tbody>
</table>
Table 5. Summary of multivariate analysis of the factor Speaker Gender for the variable Binary V.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Logodds</th>
<th>Tokens</th>
<th>V (%)</th>
<th>Factor Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.327</td>
<td>681</td>
<td>90</td>
<td>0.581</td>
</tr>
<tr>
<td>F</td>
<td>-0.327</td>
<td>1951</td>
<td>81.6</td>
<td>0.419</td>
</tr>
</tbody>
</table>
Fig. 1. Random forest for binary T (T vs. Other) responses.
Fig. 2. Conditional inference tree for binary \(T \) (\(T \) vs. Other) responses.
Fig. 3. Random forest for binary V (V vs. Other) responses.
Fig. 4. Conditional inference tree for binary V (V vs. Other) responses.
Discussion
Research hypotheses

- Confirmed:
 - In MSp vos/tú variation is used to mitigate face threatening acts such as directives.
 - Tú is more frequent in directives than in non-directives (enquiry); voseo exhibits the opposite pattern

- Also confirmed:
 - The more face-threatening directives (commands, requests) have higher T than the less face-threatening (recommendations)
Research hypotheses

- But there is a change in progress such that use of T as a mitigator is being lost:
 - Age 3 speakers (51+) use T at significantly higher rates than other age groups
 - Age 3 speakers are the only ones that use T to mitigate across all directives
 - Younger speakers (18-50) continue to use T as a mitigator, but only for high FTA (requests, commands)
Research hypotheses

- Confirmed:
 - Female speaker gender is also a strong predictor of T mitigation
 - This effect is restricted to a subset of FTA (commands and requests)
 - For commands there is a difference in V usage among Age 3 speakers:
 - women are more reluctant to use V in commands
 - men don’t make a difference between directives
Research hypotheses

- Not confirmed:
 - Social class (income, occupation) had no significant effect on address choice
 - Type of schooling (private/elite vs. public) had no statistically significant effect

- The use of T/V variation for mitigation was shared by the linguistic community (MSp.), and is being lost equally across the board
Research hypotheses

❖ Also not confirmed:
 ➢ Female addressee gender was not a significant predictor
 ➢ This is surprising considering historical data, that show that V was more frequent between same-gender interlocutors than between genders (Moyna & Ceballos 2008)
Research hypotheses

❖ Results opposite to expectations:
 ➢ Higher educational attainment had an effect on voseo/tuteo variation, but not as predicted:
 ■ Speakers with the highest level of educational attainment (University) used more V and less T than the other two groups (Secondary, Technical).
 ➢ This matches other results that point to less politeness usage (usted) by the highest group in educational attainment (Moyna 2019)
Conclusions
Remaining questions

❖ Regional spread of this usage:
 ➢ Is T mitigation possible in varieties of Usp that use more vos (West) or more tú (East)?

❖ Social spread of this usage:
 ➢ Do working class speakers follow these trends?

❖ Bigger question:
 ➢ Defining and bounding a linguistic community
 ➢ Generalizability of findings
Fernery, Belmore Botanic Garden, Dunoon (Scotland)

Ribbleshead Viaduct, Settle-to-Carlisle Railway line, North Yorkshire (England)